現在位置:首頁 > 學術會議
【2020.12.12-12.13 北京】經濟管理、決策與信息技術前沿論壇暨MADIS實驗室2020年青年學術報告會
2020-12-09 | 编辑:

 


經濟管理、決策與信息技術前沿論壇

MADIS實驗室2020年青年學術報告會


 

 

 

 

 

 

 

20201212-13 北京

主办:中国科学院管理、决策与信息系统重点實驗室


 

 

 


 

 

會議须知

热烈欢迎各位嘉宾参加“經濟管理、決策與信息技術前沿論壇暨MADIS實驗室2020年青年學術報告會”!为保证會議顺利进行,现将有关事项提示如下:

一、會議時間地點

1.會議時間:20201212-139:00-17:30

2.會議地點:中國科學院數學與系統科學研究院南樓

3.腾讯會議同步:

20201212 9:00-17:30  會議ID 632 384 323

20201213 9:00-17:30  會議ID301 449 828

二、會議报到

1.報到時間:202012128:30開始

2.報到地點:中國科學院數學與系統科學研究院南樓N204會議室

三、會議用餐

用餐地點:午餐 物科餐厅3層(自助餐)

溫馨提示:请参會代表凭餐券就餐,餐券附于手冊之內。若有缺失,请与工作人员联系。

四、會务联系

聯系人及電話:      13810673604

                              15810660753

                          王明聪  010-8254181113811417297


附會场周边地图:


會議日程

 

主办单位:中国科学院管理、决策与信息系统重点實驗室

時間:20201212-139:00-17:30

地點:中國科學院數學與系統科學研究院南樓

 

 

主持

地點

20201212日(星期六)

腾讯會議ID632 384 323

9:00-9:10

領導致辭:

中國科學院數學與系統科學研究院党委书记兼副院长 武艰

楊翠紅

中國科學院數學與系統科學研究院南樓N204會議室

9:10-9:50

王兆華 北京理工大學管理與經濟學院

報告題目:數據驅動的居民可持續消費行爲決策機理研究進展

9:50-10:30

余樂安 北京化工大學經濟管理學院

報告題目:大數據預測研究方法論

10:30-10:50

會議代表合影及茶歇

 

10:50-11:30

王學欽 中國科學技術大學管理學院(線上報告)

報告題目:COVID-19的幹預政策的因果效應分析

石堅

11:30-12:10

李鲲鵬 首都經濟貿易大學國際經管學院

報告題目:A Spatial Panel Quantile Model with Unobserved Heterogeneity

12:10-13:20

  餐(自助餐)

 

物科賓館三層

13:30-14:10

曹志東 中國科學院自動化研究所

報告題目:新冠肺炎疫情社區傳播模擬與計算實驗評估

陳旭瑾

中國科學院數學與系統科學研究院南樓N204會議室

14:10-14:50

王勇 中國科學院數學與系統科學研究院

報告題目:基因調控網絡推斷的最優化建模

14:50-15:30

曹志剛 北京交通大學經濟管理學院

報告題目:From Cooperative Games to Cooperative Functions

15:30-15:40

 

15:40-16:20

姜富偉 中央財經大學金融學院

報告題目:Equity Premium Prediction with Bagged Machine Learning

張松懋

16:20-17:00

陳凱華 中國科學院科技戰略咨詢研究院

報告題目:面向多源信息的優先發展技術選擇綜合方法研究——綜合集成研討廳方法的應用

17:00-17:40

何靜 南京財經大學信息工程學院(線上報告)

報告題目:高效子圖同構算法在反洗錢分析中的研究與應用

17:40-17:50

會議总结

楊翠紅

20201213日(星期日)

腾讯會議ID301 449 828

09:00-09:25

婁有成

報告題目:The Equivalence of Two Rational Expectations Equilibrium Economies with Different Approaches to Processing Neighbors’ Information

吳淩雲

 

中國科學院數學與系統科學研究院南樓N219會議室

09:25-09:50

孫玉瑩

報告題目: Time-varying Model Averaging via Adaptive LASSO

09:50-10:15

 吳添

報告題目:基于东京奥运會比赛气象推荐赛艇配速策略

10:15-10:30

 

10:30-10:55

喬柯南

報告題目:Economic Policy Uncertainty and the Cross-section of Cryptocurrency Returns

 

鮑勤

10:55-11:20

李雪蓉

報告題目:The Role of News Sentiment in Oil Futures Returns and Volatility Forecasting: Data-decomposition based Deep Learning Approach

11:20-11:45

李陽陽

報告題目:保結構流形學習研究

11:45-12:10

李陳筠然

報告題目:定長度若幹材料構建所需子圖問題

12:10-13:20

  餐(自助餐)

 

物科賓館三層

13:30-13:55

田開蘭

報告題目:Regional Disparities, Trade Mode, and China’s Carbon Emission Intensity Evolution

尚維

 

13:55-14:20

高翔

報告題目:全球生産網絡的視角下看重大突發事件的經濟影響

14:20-14:45

張晓萌

報告題目:A Model Averaging Treatment to Multiple Instruments in Poisson Model with Errors

14:45-15:10

張亚茹

報告題目:CLACTA: Comment-Level-Attention and Comment-Type-Aware for Fake News Detection

中國科學院數學與系統科學研究院南樓N219會議室

15:10-15:30

茶歇

 

15:30-15:55

李萌

報告題目:Generalized Exceptional Quantum Walk Search

 

尚雲

15:55-16:20

闫志華

報告題目:在線媒體突發話題發現與演化分析

16:20-16:45

王齊

報告題目:圖算法在生物信息學中的應用

16:45-17:10

張俊荣

報告題目:Why Have China’s Large Enterprises Exported Cleaner Than Small and Medium Ones? A Decomposition Analysis

17:10-17:30

會議总结

楊翠紅

 

 


“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

9:10-9:50  王兆華(北京理工大學管理與經濟學院)

 

報告題目/ Presentation title

數據驅動的居民可持續消費行爲決策機理研究進展

 

摘要/ Abstract

待定

 

報告人簡介/ Short Bio

王兆華,管理学博士,教授、博士生导师,教育部長江學者獎勵計劃特聘教授、国家傑出青年科学基金獲得者、中國青年科技獎獲得者、百千萬人才工程國家級人選、有突出貢獻的中青年專家全國優秀科技工作者茅以升北京青年科技獎獲得者、教育部新世纪优秀人才、北京市优秀教师,北京理工大学徐特立特聘教授、享受国务院政府特殊津贴。现任管理与经济学院院长。兼任管理科学与工程研究會常务理事、中国可持续发展研究會理事、中国雙法研究會理事、中国雙法研究會能源经济管理专业委员會副理事长、北京高教学會高校管理研究會理事长。担任国內外多个学术期刊主编、副主编和编委等。长期从事大數據驱动的低碳消费(生产)行为管理、能源资源与环境管理、创新与可持续发展政策建模等领域的研究,作为负责人主持国家自然科学基金(青年、面上、重点和杰青)、国家重点研发计划课题、国家“973”计划等课题(专题)、国家哲学社會科学基金、霍英东青年教师基金等30 余项;出版專著5部;在Nature等国內外学术期刊发表論文200 余篇,被SCI/SSCI檢索100余篇,累計10余篇論文入选ESI高被引論文。曾获北京市高等教育教学成果一等奖,教育部优秀科技成果一等奖,教育部优秀科技成果奖(人文社科),国防科学技术进步奖等荣誉。

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

9:50-10:30  余樂安(北京化工大學經濟管理學院)

 

報告題目/ Presentation title

大數據預測研究方法論

 

摘要/ Abstract

在信息与网络技术迅速发展的推动下,大量从宏观到微观、从自然到社會的观察、感知、计算、仿真、模拟、传播等设施和活动,产生出大量数据,从而形成大數據(Big Data)”。为此,本报告围绕大數據预测研究这一主题,通过实例讲述如何利用大數據进行科学研究,从国內外科学研究的基础范式主线出发,分四个模块来进行讲解:大數據的价值、科学研究的四大范式、大數據预测研究的基本方法、大數據预测研究的面临挑战。

 

報告人簡介/ Short Bio

余樂安,国际系统与控制科学院院士,国家傑出青年科学基金获得者,中组部首届萬人計劃和中國科學院百人計劃获得者,现为北京化工大学教授、博士生导师。出版專著5部,發表SCI/SSCI論文100余篇,Google Scholar引用8500多次,H指數爲50,多篇論文被评为“ESI高被引論文/“ESI热点論文。先後獲得Elsevier中国高被引学者、加拿大研究理事會全球Top 1%高被引学者、中國青年科技獎、全国(百篇)优秀博士学位論文、教育部自然科学奖一等奖和北京市科学技术奖一等奖等奖励。主要研究领域为商务智能、大數據挖掘、经济预测与金融管理等。

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

10:50-11:30  王學欽(中國科學技術大學管理學院)(線上報告)

 

報告題目/ Presentation title

COVID-19的幹預政策的因果效應分析

 

摘要/ Abstract

新型冠狀疾病(COVID-19)的持續大流行已經影響了成千上萬人,並造成了巨大的經濟損失。大多數受影響的國家已實施了不同程度的非藥物幹預措施,以便控制和預防COVID-19的传播。了解这些干预措施的不同時机和有效性是非常至关重要的。我们通过结合美国各县构建了一个合成區域,分別對溫州和上海進行了因果推斷。我們采用與COVID-19傳播有關的關鍵特征以及幹預前的COVID-19累計確診來模擬目標城市。通過我們構建的合成控制法和斷點回歸,得出溫州實施的嚴格幹預措施和上海實施的溫和幹預措施在統計上具有顯著的處理效果,能夠顯著抑制COVID-19的傳播。在針對不同幹預措施的流行病動力學模型下,我們得到在流行初期,對COVID-19的一級響應至關重要。而且,一旦COVID-19的传播持续,就必须实行小区隔离。如果采取适当的控制措施,该流行病會得到迅速且有效的控制。

 

報告人簡介/ Short Bio

王學欽,中国科学技术大学管理学院教授。2003年毕业于纽约州立大学宾厄姆顿分校。他现担任教育部高等学校统计学类专业教学指导委员會委员、统计学国际期刊《JASA》等的Associate Editor、高等教育出版社《Lecture Notes: Data Science, Statistics and Probability》系列叢書的副主編。


 

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

11:30-12:10  李鲲鵬(首都經濟貿易大學國際經管學院)

 

報告題目/ Presentation title

A Spatial Panel Quantile Model with Unobserved Heterogeneity

 

摘要/ Abstract

This paper introduces a spatial panel quantile model with unobserved heterogeneity. The proposed model is capable of capturing high-dimensional cross-sectional dependence and allows heterogeneous regression coefficients. A new procedure is proposed to estimate the model parameters.  We establish the asymptotic theory of the estimated parameters under the large-$N$ and large-$T$ scenario. We prove that the widely-used Bai and Ng's information criterion can consistently estimate the dimension of interactive fixed effects. Monte Carlo simulations document the satisfactory performance of the proposed method. We apply our model to study the quantile co-movement structure of the U.S. stock market by taking into account the input-output linkages as firms are connected through the input-output production network.

 

報告人簡介/ Short Bio

李鲲鵬,现为首都經濟貿易大學國際經管學院教授、院长,2011年毕业于清华大学经济管理学院获得经济学博士学位。在国內外高水平期刊上发表論文数十篇,包括Annals of StatisticsReview of Economics and StatisticsJournal of EconometricsJournal of Business and Economic Statistics等,主持國家自然科學基金優青項目等,擔任著名期刊Journal of Business and Economic StatisticsAE

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

13:30-14:10  曹志東(中國科學院自動化研究所

 

報告題目/ Presentation title

新冠肺炎疫情社區傳播模擬與計算實驗評估

 

摘要/ Abstract

常态化疫情防控下,我国本土出现大规模爆发的可能性已不大,而输入性风险导致的聚集性疫情反弹時有出现。未来较长一段時期內,我国特定密集人群中的社区传播风险较高,社区传播已成为疫情防控的重点和难点。由于社区传播案例缺乏,而疫情传播系统又高度复杂,实证研究存在很大局限,因此,利用模拟仿真计算实验来研究新冠肺炎疫情的社区传播问题具有很大前途。报告阐述了基于人工疫情系统与计算实验的公共卫生事件“情景-應對”方法,利用多智能體建模技術,建立了新冠肺炎病毒在複雜異質人群中傳播流行的全過程,由此對無症狀感染者及社區接種疫苗問題進行了計算實驗評估,從而爲新冠疫情社區傳播的精准防控和定向疫苗接種計劃提供科學依據。

 

報告人簡介/ Short Bio

曹志冬,男,博士,中國科學院自動化研究所复杂系统管理与控制国家重点實驗室研究員,硕士研究生导师,2020年获国家傑出青年科学基金项目。现为科技部新冠疫情防控信息化专班专家组成员,担任多个学术组织的常务理事、理事与专委會委员。研究方向为公共卫生应急管理、社會计算与大數據分析,主持并组织实施国家科技重大专项艾滋病和病毒性肝炎等重大傳染病防治、國家科技重點研發計劃生物安全關鍵技術研發、基金委重大研究計劃非常規突發事件應急管理研究大數據驱动的管理与决策及基金委新冠肺炎疫情等公共衛生事件的應對、治理及影響专项等资助课题十余项,针对新冠肺炎、非典、甲流、手足口病、登革热等对我国构成严重威胁的重大传染病疫情,发展大规模疫情信息处理、時空风险评估、传播动力学建模、大數據分析、情景模拟与计算实验评估的模型和技术,致力于推动我国应对重大突发公共卫生危机的应急管理能力建设。在IJMSIJGISIEEE ISIEEE SMC-Systems、科学通报、中国科学等国內外主流期刊和會議上发表論文近百篇,主编/主譯傳染病信息學著作3部,获军队科技进步一等奖、二等奖、中国仿真学會自然科学一等奖等科技奖励8項。参与新冠抗疫应急保障工作,给国家和部委机构提交大量建議咨询报告,新冠学术成果得到大量报道、转载和引用。

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

14:10-14:50  王勇(中國科學院數學與系統科學研究院)

 

報告題目/ Presentation title

基因調控網絡推斷的最優化建模

 

摘要/ Abstract

基因调控网络是指基因作为节点,基因間调控关系作为边的有向图,是细胞完成基本生命活动以及对外界刺激作出应答的分子基础。对调控关系的推断是从基因的表达量的测量数据出发,定量刻画基因表达量之間相互影响,可在反问题的框架下进行最优化建模。近期表观遗传学的进展,推动了对染色质水平上的状态和结构的认识和定量测量,需要在建模中描述反式调控因子和顺式调控元件在特定的细胞环境下的合作,拟合基因的時空特异表达模式,构建模型和数据结合的非凸优化,设计高效求解算法。我们将报告在这一方面的思考和研究进展。

 

報告人簡介/ Short Bio

王勇,中國科學院數學與系統科學研究院应用数学所研究員。1999 年从內蒙古大学数学系的数学物理专业本科学位,2002 年從大連理工大學應用數學系獲得運籌學與控制論碩士學位,2005年从中國科學院數學與系統科學研究院获得运筹学与控制论专业的理学博士学位。曾先后到美国波士顿大学生物信息学中心, 日本产业技术综合研究所计算生物研究中心和美国斯坦福大学统计系从事访问研究,目前研究兴趣是生物医学大數據的最优化建模。


 

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

14:50-15:30  曹志剛(北京交通大學經濟管理學院)

 

報告題目/ Presentation title

From Cooperative Games to Cooperative Functions

 

摘要/ Abstract

Possessing numerous applications, the theory of cooperative games is fundamental.  However, the set function setting makes cooperative games  highly technical to analyze and calculus is generally unapplicable. Its central solution concept, the core, is combinatorial and hard to analyze. In particular, (i) proving whether the core is nonempty is technical, (ii) the core is often large when nonempty, (iii) closed forms  are typically unavailable, (iv) implementing the core often requires the existence of a powerful central agent, (v) the core allocation may not be robust,  and (v) testing whether a payoff allocation is in the core is often computationally hard. Motivated by the general equilibrium theory, this paper makes advances on these  fronts by studying a framework that is based on ordinary functions meeting certain regularity conditions (referred to as cooperative functions). This framework aims at solving an infinite number of related problems in a unified way and makes differential and superdifferential often applicable. Applications of this framework to newsvendor games, linear production games and EOQ games easily reproduce many well-known results and produce several new results.

 

報告人簡介/ Short Bio

曹志剛,北京交通大學經濟管理學院教授。2010年毕业于中科院数学与系统科学研究院并留院任助理研究員。2017年加盟北京交通大學經濟管理學院,任卓越百人計劃教授。主要研究兴趣为博弈论及其应用,包括网络博弈和算法博弈论等。在相关领域主流刊物发表論文30余篇,包括Operations ResearchGames and Economic BehaviorJournal of Mathematical Economics等期刊以及ACM Economics & Computation等會議。获中国信息经济学理论贡献奖、系统科学与系统工程青年科技奖、中国决策科学青年科技奖和关肇直青年研究奖。任中国信息经济学會常务理事,中国运筹学會理事、博弈论分會副秘书长、排序论分會副秘书长,中国雙法学會智能决策与博弈分會副理事长、青年工作委员會副秘书长、网络科学分會副秘书长等。主持包括优秀青年基金在內的国家自然科学基金委课题4項。

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

15:40-16:20  姜富偉(中央財經大學金融學院)

 

報告題目/ Presentation title

Equity Premium Prediction with Bagged Machine Learning

 

摘要/ Abstract

We introduce a variation of Yu (2011)’s weighted bagging estimation method and show it substantially improves the predictability of the equity premium and other economic variables. This new machine learning method sharply improves equity premium predictability of many models with significant monthly out-of-sample R-square up to almost 3% and annual utility gains of more than 3.5%. The improved predictive performance stems from better performance during periods of economic recession and market turbulence and downturns, as well as increased diversity and built-in shrinkage of our weighted bagging method. Interest rate related variables show the strongest predictive ability for the equity premium.

 

報告人簡介/ Short Bio

姜富偉,现任中央财经大学金融工程系主任,教授、博导、龙马青年学者,研究领域包括讜r臼谐 ⒆什定价、行为金融、金融科技等,在金融学国內外顶级期刊Journal of Financial EconomicsReview of Financial Studies、《金融研究》、《管理科学学报》、《经济学季刊》等发表論文30余篇,主持北京市和國家自然科學基金項目4項。研究成果被ESI評爲經濟管理類全球前1%最高被引用論文,被《哈佛商业评论》、《清华金融评论》等转载,荣获亚洲金融协會最佳論文奖、国际财务管理协會最佳論文奖等众多国际学术奖励荣誉。担任国家自然科学基金通讯评审、教育部学位中心评审专家、SSCI來源期刊Annals of Economics and Finance編委和30多本中英文頂尖學術期刊評審。

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

16:20-17:00  陳凱華(中國科學院科技戰略咨詢研究院)

 

報告題目/ Presentation title

面向多源信息的優先發展技術選擇綜合方法研究——綜合集成研討廳方法的應用

 

摘要/ Abstract

科技政策与战略研究的背景愈加复杂,综合多源主客观信息是提高科技政策与战略的必然选择。有效选择优先发展的技术是科技政策和战略研究最基本的目标,但面临的影响因素越加复杂,同時可采用信息呈现多元化、动态化和复杂化,迫切需要借助信息技术和人工智能技术处理复杂关系和复杂信息,辅助决策,构建主客观集成的综合集成方法。借鉴了钱学森的“综合集成研讨厅”的思想,把技术预见视为复杂的决策系统,充分利用定性和定量集成的优势,从大數據的思维思考技术预见体系中专家体系、知识体系和机器体系的整合。建議构建人机大數據交互界面,实现技术预见过程的科学化、信息化和智能化,促进技术预见过程中主客观信息互相支撑和互相佐证,提高操作效率。

 

報告人簡介/ Short Bio

陳凱華,中國科學院科技戰略咨詢研究院研究員,中国科学院大学公共政策与管理学院教授,目前兼任中国科学学与科技政策研究會常务理事、副秘书长,中国企业管理研究會新兴技术未来分析与管理专业委员會副會长。近年主要关注创新发展与政策、创新计量与管理、国家创新系统治理、科技创新人才治理、国际科技创新合作、技术预见理论与方法等方向研究。曾获得中国科学院青年创新促进會优秀會员、中国科学院卢嘉锡青年人才奖、中国科学学与科技政策研究會优秀青年奖;获得创新管理与创新政策方向国家傑出青年科学基金资助,主持国家社科重大专项项目。兼任Technovation副主編,並參與創辦《Innovation and Development Policy》(中国科技期刊国际影响力提升计划资助),任副主编。多篇論文合作发表在科技政策与技术管理领域国际权威专业期刊Research PolicyTechnovation以及Journal of Business ResearchOmegaRegional Studies、《管理世界》、光明日报(理论版、学习思想特刊)等交叉学科方向的报刊上。主要执笔完成的多分政策建議获得批示和感谢,多方面建議被采纳实施,并牵头或参与起草国家标准两项;科技部十四五國家科技人才規劃研究專家組成員之一,組織並合作出版《國家創新發展報告》、《國家科技競爭力報告》、《科技政策研究之技術預見》、《中國先進能源2035技術預見》等研究報告。

“經濟管理、決策與信息技術前沿論壇”邀请报告(20201212,N204

17:00-17:40  何靜(南京财经大学信息工程学院)

 

報告題目/ Presentation title

高效子圖同構算法在反洗錢分析中的研究與應用

 

摘要/ Abstract

该报告旨在介绍一种高效的時間子图同构算法,用于有效地进行反洗钱分析。 反洗钱分析需要复杂的方法来调查参与者并准确判断复杂且不断变化的交易网络中的高风险支付链。该报告旨在提供一种高效的子图同构算法,为防范金融犯罪和合规管理提供准确,全面和动态的解决方案。利用该子图同构算法,将大大提高准确性,速度和效率,以此识别洗钱活动,并为侦查和实時监控开辟一条全新的途径。

 

報告人簡介/ Short Bio

何靜,2013年澳大利亚研究理事會傑出青年基金获得者。主要研究方向为区块链和多目标决策。发表論文170余篇,其中SCI收錄77篇。從2006年起擔任自然科學基金委信息學部和管理學部評審專家。


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

9:00-9:25  婁有成

 

報告題目/ Presentation title

The Equivalence of Two Rational Expectations Equilibrium Economies with Different Approaches to Processing Neighbors’ Information

 

摘要/ Abstract

We consider a finite-agent Hellwig (1980) economy with an extension to allow traders to observe their neighbors’ signals in an exogenously given social network. There are two potential approaches for traders to process observed signals: directly infer information about the fundamentals from the complete collection of observed signals, or indirectly from an average of observed signals. The two approaches lead to different information sets for traders. In this study, we investigate whether the two economies corresponding to the two approaches are equivalent in the sense that they have the same market equilibrium. For general network and signal structures, we present a necessary and sufficient condition for the equivalence, revealing that the two finite-agent economies are not equivalent in general unless the network structure and signal structure coordinate well. When traders have homogeneous preferences and the signal structure takes the classical form in the literature, we find that the two finite-agent economies are equivalent for regular graphs, but not for chain and star graphs. Finally, for the classical signal structure, we show that the two large economies, defined as the limit of a sequence of replica finite-agent economies, are equivalent for any network structure.

 

報告人簡介/ Short Bio

婁有成,中國科學院數學與系統科學研究院副研究員。主要研究兴趣为行为金融、微观市场与复杂网络的交叉研究,侧重于社會网络环境对投资者个体决策行为、群体决策行为以及整个市场的影响。在Journal of Economic Theory, Journal of Mathematical Economics, Mathematical Social Sciences, European Journal of Operational Research, IEEE Transactions on Automatic Control, Automatica等国际著名期刊上发表学术論文近20篇。

 


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

9:25-9:50  孫玉瑩

 

報告題目/ Presentation title

Time-varying Model Averaging via Adaptive LASSO

 

摘要/ Abstract

A major challenge with the model averaging approach is in selecting an appropriate set of weights, especially for forecasting economic and financial time series with structural changes. This paper proposes a new time-varying model averaging method via an adaptive LASSO to determine optimal time-varying combination weights for candidate models, thus avoiding over-fitting and yielding sparseness from a vast set of various potential predictive variables, simultaneously. The asymptotic optimality and convergence rate of the selected weights are derived when all candidate models are allowed to be misspecified, and the consistency and normality of the proposed time-varying model averaging estimator are obtained when the true model is included in candidate models. Simulation studies and empirical applications to inflation forecasting highlight the merits of the proposed method relative to other competing model averaging methods.

 

報告人簡介/ Short Bio

孫玉瑩,2016年获得中国科学院大学管理学博士学位,获得中國科學院數學與系統科學研究院重要科研進展獎(20172019、系统所关肇直青年研究奖,中国管理科学与工程学會优秀博士学位論文奖(2019)等。长期从事经济预测理论与方法研究,在国际重要期刊发表論文10余篇,包括Journal of Econometrics, Econometric ReviewsEnergy Economics, Quantitative Finance, China Economic Review,被Journal of Management Science and Engineering 邀請爲Special Issue Guest Editor之一。參與撰寫政策研究報告數十篇,其中多篇得到了國家領導人的重要批示,多篇得到相關機構采用。

 


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

9:50-10:15   

 

報告題目/ Presentation title

基于东京奥运會比赛气象推荐赛艇配速策略

 

摘要/ Abstract

室外体育赛事的进行都會受到气象因素的影响,特别是以赛艇项目为代表的水上运动项目,海拔、温度、湿度和风向对于比赛成绩的影响巨大。受到新冠疫情的影响,东京奥运會比赛時間存在很多变数,因此对于更为充分的考虑比赛時期的气象因素,对于我国赛艇项目的奥运备战具有重要的意义。本研究选取19793月至20203月這40年东京市逐小時的气象数据,以及20102019年历届奥运會和世锦赛决赛的比赛数据探究:1)预测东京奥运會赛艇比赛時期的气象情况;2)分析特定溫度、溫度和風向下不同水平運動員的配速策略特征 3)针对我国运动员特征,提供配速策略建議。

 

報告人簡介/ Short Bio

吳添,清华大学应用经济学博士,中国科学院预测科学研究中心副研究員,主要从事产业发展战略与规划、预测与政策分析、大數據处理和分析等方面的研究工作,第一作者出版学术專著1部,在国內外重要期刊上发表論文 30 余篇,其中 SCI 收錄論文25篇,擔任One Earth, Energy Policy, Energy, Journal of Cleaner Production等國際期刊審稿人。目前主持國家自然科學基金青年科學基金項目一項,作爲主要承擔者參與國家自然科學基金面上項目一項,參與國家重點研發計劃科技冬奧重點專項冬季潛優勢及落後項目國際化訓練平台關鍵技術研究與示範項目、國家體育總局科技攻關課題、國家體育總局體育科學研究所基本科研業務費資助項目等課題,共同主持中國科學院大學校部教師與研究所科研合作專項基金(已結題),作爲研究骨幹參與中國科學院院級科研項目一項(已結題)。


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

10:30-10:55  喬柯南

 

報告題目/ Presentation title

Economic Policy Uncertainty and the Cross-section of Cryptocurrency Returns

 

摘要/ Abstract

Economic policy uncertainty is examined as a pricing factor in cryptocurrency markets. An Intertemporal Capital Asset Pricing Model is specified with the innovation of economic policy uncertainty. By using a news-based economic policy uncertainty index and Fama-MacBeth two-step regression, we document that the risk premium of economic policy uncertainty is positively significant in cryptocurrency markets. More interestingly, prior studies show strong evidence that the risk premium of economic policy uncertainty is negative in stock markets. Our finding reveals the segmentation and heterogeneity of economic agents in equity markets and cryptocurrency markets. An increase of economic policy uncertainty indicates an unfavorable shift of investment opportunity set for the agents in stock markets, but a favorable shift of investment opportunity set for the agents in cryptocurrency markets. This study explores the possibility that cryptocurrencies might be used as a new investment instrument to hedge economic policy risk.

 

報告人簡介/ Short Bio

喬柯南,2017年畢業于中國科學院大學獲博士學位。2017年至今就职于中國科學院數學與系統科學研究院。主要研究兴趣包括金融资产定价和市场微观结构。主持国家自然科学基金项目一項。在Journal of Financial Markets, Energy Economics, Quantitative Finance, Journal of Systems Science and Complexity等学术期刊发表研究論文多篇,多次在China International Conference in FinanceAnnual Conference of the Multinational Finance Society等国际學術會議上作邀请报告。


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

10:55-11:20  李雪蓉

 

報告題目/ Presentation title

The Role of News Sentiment in Oil Futures Returns and Volatility Forecasting: Data-Decomposition based Deep Learning Approach

 

摘要/ Abstract

In this paper, we extract the qualitative information from crude oil news headlines, and develop a novel VMD-BiLSTM model with investor sentiment indicator for crude oil forecasting. First, we construct a sentiment score considering cumulative effect from contextual data of oil news texts. Then, we adopt an event-based method and GARCH model to investigate the impact of news sentiment on returns and volatility. A non-recursive signal decomposition method, namely variational mode decomposition (VMD), is applied to decompose the historical crude oil return and volatility data into various intrinsic modes. After that, a bidirectional long short-term memory neural networks (BiLSTM) is introduced as the deep learning prediction model that integrates both the qualitative and quantitative model inputs. Our empirical results indicate that the shock of news sentiment significantly causes the fluctuation of oil futures prices, and news sentiment has an asymmetric impact on the volatility of oil futures. The incorporation of sentiment score is always helpful for improving the forecasting performances in all benchmark scenarios. Specifically, our proposed data-decomposition based deep learning model is more effective than several econometric and machine learning models.

 

報告人簡介/ Short Bio

李雪蓉,2013年畢業于中國人民大學獲管理學學士學位;2019年畢業于中國科學院大學獲管理學博士學位。20191月至今就职于中國科學院數學與系統科學研究院。目前的研究方向主要集中在大數據与人工智能、预测理论与方法、管理信息系统、决策支持等方面的研究。在《International Journal of Forecasting》、《Scientometrics》、《系统工程理论与实践》等国內外重要期刊发表学术論文10余篇。主持国家自然科学基金青年项目一項。曾参与国家发改委、中国人民银行、证监會、优酷视频等项目的数据建模、功能开发与系统维护。多次参与国家宏观经济预测报告的撰写,并得到国家领导人批示。

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

11:20-11:45  李陽陽

 

報告題目/ Presentation title

保結構流形學習研究

 

摘要/ Abstract

流形學習自2000年被提出至今,发展了一系列经典的流形学习算法,此类算法都假设数据集的局部邻域为线性空間,这种假设存在的一个问题是没考虑数据集的曲率信息。保结构学习的提出,首先考虑零曲率流形,借助矩阵李群来对数据集的特征重新进行表示,避免曲率信息对降维的影响。在此基础上提出曲率感知流形学习,计算数据集的曲率信息,给出曲率估计的完整过程,并在理论上证明曲率信息对流形学习降维结果的必要性。

 

報告人簡介/ Short Bio

李陽陽于2019年在中國科學院數學與系統科學研究院取得博士学位,博士生导师为陆汝钤院士。目前在数学院三所實驗室做博士后,合作导师为陆汝钤院士以及杨晓光研究員。近五年来以唯一作者以及第一作者共完成并发表了7篇高质量学术論文,2020年获得中国科学院优秀博士学位論文奖励。研究方向为:理论人工智能、几何机器学习、图的表示学习等。

 


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

11:45-12:10  李陳筠然

 

報告題目/ Presentation title

定長度若幹材料構建所需子圖問題

 

摘要/ Abstract

基于对现实问题的深度理解和探讨,我们将复杂现实问题抽象成为一些经典优化问题的组合,以科学研究和实际生活、生产中的需求作为目标函数,建立合理数学模型。在本专题研究中,首次提出并研究了区别于最小边权重子图问题的定長度若幹材料構建所需子圖問題。对于给定解决问题的一个α-近似算法,我們設計了一個2α-近似算法和一個漸近7/4-近似算法来解决定長度若幹材料構建所需子圖問題。同時还设计了两个3/2 -近似算法和两个渐进全多项式時間近似方案(AFPTAS)

 

報告人簡介/ Short Bio

李陳筠然,中國科學院數學與系統科學研究院特别研究助理(博士后),毕业于云南大学运筹学与控制论专业。主要研究方向:组合最优化,算法设计与分析。


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

13:30-13:55  田開蘭

 

報告題目/ Presentation title

Regional disparities, trade mode, and China’s carbon emission intensity evolution

 

摘要/ Abstract

One of China's major national targets is to environmentally upgrade its economy. In this paper, we define environmental upgrading as lowering the carbon intensity. The disparities among China’s regions suggest to examine China's carbon emission performance at the regional level. For this purpose, we use inter-regional input-output tables (for 2002, 2007, and 2012) that distinguish processing exports from ordinary exports. The regional emission intensities (EIs) show environmental downgrading in the period 2002–2007 and upgrading during 2007–2012. To identify the determinants of the evolution of regional EIs, we have employed a multiplicative structural decomposition analysis. Changes in direct emission coefficients and changes in production technology are found to be the major determinants. However, next to these standard determinants, we also evaluate the effects on the changes in regional EIs of changes in inter-regional trade and changes in inter-regional spillovers. Changing inter-regional trade is found to have increased the EI significantly in western and central regions. This suggests that more “dirty” production was shifted from coastal to inland regions. Our study yields clear policy recommendations for achieving China's transformation to a low-carbon economy.

 

報告人簡介/ Short Bio

田開蘭,中國科學院數學與系統科學研究院助理研究員,中国科学院大学管理学博士,荷兰格罗宁根大学经济学博士,主要研究领域为全球价值链建模、投入产出技术、贸易经济等。在Economic Systems ResearchEnergy Economics、《管理科学学报》、《中国工业经济》等国內外优秀学术期刊上发表論文十余篇。主持国家自然科学基金项目1項,國家統計局重點項目1項。作为主要成员参与商务部重大项目、国家社科基金重大项目等,撰写政策研究报告多篇,部分被部委采纳。


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

13:55-14:20   

 

報告題目/ Presentation title

全球生産網絡的視角下看重大突發事件的經濟影響

 

摘要/ Abstract

2020年初,新冠肺炎疫情爆发在短期內对中国经济造成比较严重的影响。中国作为全球生产体系中的重要生产基地之一,疫情带来的中国产能损失沿着全球生产网络对上下游经济体造成严重冲击。本文基于世界投入产出模型提出了重大突發事件對全球生産網絡沖擊的測算框架,以新冠肺炎疫情對中國及上下遊經濟體的沖擊爲例給出了實證研究的研究範式。測算結果顯示,截至2020310日,新冠肺炎疫情導致的中國産能損失共將造成4063億美元的世界經濟損失,其中32%爲疫情通過全球生産網絡對中國以外經濟體造成的損失。分經濟體來看,日本、美國等中國的主要貿易夥伴以及中國台灣、馬來西亞等亞洲供應鏈中的重要生産夥伴將受到較強沖擊;分行業來看,參與全球價值鏈分工程度較高的技術密集型制造業和生産性服務業將受到主要影響。在全球生産網絡面臨重構的背景下,本文認爲疫情對全球生産網絡的沖擊在另一方面也爲中國向全球價值鏈高端攀升提供了契機。

 

報告人簡介/ Short Bio

高翔,中國科學院國家數學與交叉科學研究中心博士後,2020年在中國科學院數學與系統科學研究院取得博士学位,并获得成思危基金優秀學生獎。近五年來共完成17篇高质量中英文論文,其中6篇已发表在国內外核心期刊,主要研究方向:全球价值链、产业转移、投入产出技术。

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

14:20-14:45  張晓萌

 

報告題目/ Presentation title

A Model Averaging Treatment to Multiple Instruments in Poisson Model with Errors

 

摘要/ Abstract

We analyze Poisson regression when the covariates contain measurement errors and when multiple potential instrumental variables are available. Without empirical knowledge to select the most suitable variable as an instrument, we propose a novel model averaging approach to resolve this issue. We prescribe the implementation procedure and establish the optimality in terms of minimizing the prediction risk. We further show that among all the potential instrumental variable models, as long as one model is correctly specified, our method will lead to consistent prediction. The performance of the method is illustrated through simulations and a movie sales example.

 

報告人簡介/ Short Bio

張晓萌于2018年被录取为中国科学院大学的研究生,在中國科學院數學與系統科學研究院攻读博士学位,目前是硕博连读博士一年级的学生,导师为張新雨研究員。入学以来,先后获得了中國科學院數學與系統科學研究院“优秀学生”荣誉称号,以及2020年度中國科學院數學與系統科學研究院首届“卓越獎學金”。研究方向:模型平均,组合预测,理论人工智能,因果推断等。


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

14:45-15:10  張亚茹

報告題目/ Presentation title

CLACTA: Comment-Level-Attention and Comment-Type-Aware for Fake News Detection

 

摘要/ Abstract

Microblogs become popular communication tools for news sharing in recent years. Meanwhile, propagation of fake news becomes a serious issue concerning the public and government due to openness and rapidity of online communication. It is widely concerned how to automatically detect fake news as soon as possible. However, most existing methods do not well utilize comments which contain rich semantics information or ignore their effect. Inspired by the revealing role of some comments to the original post, we propose the neural network model which consist of comment-level-attention (CLA) and comment-type-aware (CTA) for fake news detection. In CLA, we devise the attention mechanism which considers semantics relation between the post and the comments. Based on attention weights we take weighted sum of different comment representations for the sample as corresponding comment feature, which can capture key comment information. As similar to stance, we assume comments can assemble into several different types naturally. Therefore, in CTA, we store comment type representations by the memory matrix which is learned in the training process of sample stream. Comment feature for the sample is aware of the memory matrix and obtains corresponding comment type feature. We concatenate the above two auxiliary features and learned post feature to help detect fake news. Our validation experiments using the Weibo dataset and Pheme dataset demonstrate the effectiveness of the proposed model.

 

報告人簡介/ Short Bio

張亚茹,中國科學院數學與系統科學研究院2018级硕博生,导师为唐锡晋研究員,研究方向:大數據与网络舆情,自然语言处理,社會网络分析。

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

15:30-15:55   

 

報告題目/ Presentation title

Generalized Exceptional Quantum Walk Search

 

摘要/ Abstract

We mainly study exceptional configuration for coined quantum walk search. For searching on a two-dimensional grid by AKR algorithm, we find some new classes of exceptional configurations that cannot be found by the AKR algorithm effectively and the known diagonal configuration can be regarded as its special case. Meanwhile, we give two modified quantum walk models that can improve the success probability in the exceptional configurations by numerical simulation. Furthermore, we introduce the concept of generalized exceptional configuration and consider search by quantum walk on a cycle with Grover coin. We find that the most common coin combination model (G, ), where G is a Grover diffusion transformation, is a generalized exceptional configuration when just searching one marked vertex on the cycle. In the end, we find generalized exceptional configuration has a different evolution of quantum coherence from exceptional configuration. These extend largely the range of exceptional configuration of quantum walk search in some sense.

 

報告人簡介/ Short Bio

Meng Li is currently a PhD student in Institution of Mathematics, AMSS, CAS, advised by Prof. Yun Shang. Her interest is on the theory of quantum computation and quantum information, with focus on quantum walk.

 


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

15:55-16:20  闫志華

 

報告題目/ Presentation title

在線媒體突發話題發現與演化分析

 

摘要/ Abstract

在线媒体是公众获取信息和表达观点的工具,也是社會突发话题产生和传播的重要渠道。从在线媒体的海量非结构化数据流中发现突发话题,揭示突发话题的演化规律对社會治理有重要的意义。研究提出基于高效用模式和话题模型的突发话题发现(High Utility Bursty Topic Model, HU-BTM) 模型,使用高效用模式挖掘找出文本數據中的突發詞組, 使用基于普通Pólya壇子模型的Gibbs抽樣方法,將突發詞組與突發詞引入話題模型,實現突發話題的自動識別. 爲了分析突發話題演化中的話題産生、話題繼承、話題融合、話題分裂等關系,研究提出基于主題模型的桑基演化圖,對突發話題的演化路徑進行可視化描述。

 

報告人簡介/ Short Bio

闫志華,中國科學院數學與系統科學研究院博士生,导师是唐锡晋研究員,研究方向为自然语言处理、大數據与社會舆情。

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

16:20-16:45   

 

報告題目/ Presentation title

圖算法在生物信息學中的應用

 

摘要/ Abstract

本報告主要介紹本人在博士研究階段所做的三類的工作:(1)結合信念傳播(Belief Propagation)和集成學習(Ensemble Learning)的思想,構建網絡模型預測lncRNA與複雜疾病的關系;(2)構造圖及超圖上多形式的隨機遊走(Random Walk)預測可治療複雜疾病的有效藥物組合;(3)提出一種差異網絡分析的方法,並預測與阿爾茲海默症相關的腦區。

 

報告人簡介/ Short Bio

王齊,中科院应用数学所,运筹学与控制论专业博士三年级研究生,导师是闫桂英研究員。目前主要的研究方向为生物信息学,主要围绕(1)複雜疾病關鍵miRNA/lncRNA的計算機識別;(2)心腦血管疾病、癌症等重大複雜疾病的藥物組合預測;(3)阿爾茲海默症等腦疾病的腦區功能研究等問題進行相關研究工作。


 

MADIS實驗室2020年青年學術報告會”邀请报告(20201213,N219

16:45-17:10  張俊荣

 

報告題目/ Presentation title

Why Have China’s Large Enterprises Exported Cleaner Than Small and Medium Ones? A Decomposition Analysis

 

摘要/ Abstract

本文基于工業企業數據庫和海關數據編制了20072012年區分大型、中型、小微企業的中國投入産出表(LMS表),並基于LMS表分別測算了不同規模類型企業的出口隱含碳排放水平。結果顯示中國工業行業一半以上的出口隱含碳是由中小微企業出口拉動的,2012年占比達56%2007年爲68%)。同時,测算发现大型企业的出口碳强度最低,小微企业最高,中型企业则介于二者之間。为此,本文进一步利用结构分解分析方法(SDA)探究了不同规模类型企业之間出口碳强度差异的驱动原因。分解结果显示,大型企业较高的中間产品进口率和较清洁的出口产品结构是导致大型企业出口碳强度较低的两个最主要的因素。一方面,大型企业的中間产品进口率明显高于中小微企业;另一方面,大型企业出口产品以更为清洁的技术密集型产品为主,如通信设备、计算机及其他电子设备制造业和电气机械及器材制造业产品;而中小微企业的出口则主要集中于资源和劳动密集型产品。现实意义上,本研究为从企业规模视角制定差异化的产业政策和优化中国出口产品结构提供了有益启示;学术意义上,为中国及其他经济体编制区分异质性的投入产出表提供了有效参考。

 

報告人簡介/ Short Bio

張俊荣,中國科學院數學與系統科學研究院博士生,导师是楊翠紅研究員,研究方向为投入产出技术与能源经济、宏观经济分析。

附件下載:
 
 
【打印本頁】【關閉本頁】
電子政務平台   |   科技網郵箱   |   ARP系統   |   會議服务平台   |   聯系我們   |   友情鏈接