對經典不可壓縮Navier-Stokes 方程:關于該問題的整體正則性是Clay研究所公布的七大千禧年問題之一。我們[7]证明了只要初始速度的一个方向导数在临界函数空间中充分小时,该问题存在唯一整体解,根据此条件, 我们构造了多类使得该方程存在整体解的大初值;更进一步我们[3]將此結果推廣到了三維各向異性的Navier-Stokes方程;在[8]中证明了对于任意初值, 只要该方程的一个粘性系数充分大时,三维Navier-Stokes方程存在唯一的整體解。
P.L. Lions《流體力學中的數學理論》Mathematical Topics in Fluid Mechanics, Vol 1, 1996, 第33頁提出如下公開問題:非均勻粘性不可流體密度塊邊界的正則性是否可以不隨時間而變化? 在假設粘性系數爲正常數且在二維情形,我們證明了任意兩塊非零常數密度塊的界面的正則性不隨時間而變化(ARMA 2016;CPAM 2019); 当粘性系数在常数附近且在二维情形,我们[2]证明了任意两块非零常数密度块的界面的正则性不随时间而变化; 如不满足此条件, Fefferman等人構造了反例。在三維情形,在更一般的框架下,我們[1]研究非均勻不可壓縮Navier-Stokes方程的適定性,特別的,我們可用此框架研究三維密度塊邊界正則性的傳播。
(1). Ping Zhang. Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system. Adv. Math. 363. 2020.
(2). Marius Paicu,Ping Zhang. Striated Regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity. Commun. Math. Phys. 376: 385-439. 2020.
(3). Yanlin Liu,Marius Paicu,Ping Zhang. Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative. Arch. Ration. Mech. Anal. 238: 805-843. 2020.
(4). Reinhard Farwig,Chenyin Qian,Ping Zhang. Incompressible Inhomogeneous Fluids in Bounded Domains of R3 with Bounded Density. J. Funct. Anal. 278(5). 2020.
(5). Marius Paicu,Ping Zhang,Zhifei Zhang. On the hydrostatic approximation of the Navier-Stokes equations in a thin strip. Adv. Math. 372. 2020.
(6). Jiajiang Liao,Frank Sueur,Ping Zhang. Zero-viscosity limit of the incompressible Navier-Stokes equations with sharp vorticity gradient. J. Differ. Equ. 268(10): 5855-5891. 2020.
(7). Yanlin Liu,Ping Zhang. Global solutions of 3-D Navier-Stokes system with small unidirectional derivative. Arch. Ration. Mech. Anal. 235: 1405-1444. 2020.
(8). Yanlin Liu,Ping Zhang. Global well-posedness of 3-D anisotropic Navier-Stokes system with large vertical viscous coefficient. J. Funct. Anal. 279(10). 2020.